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Abstract 

 
Data Vortex has made waves in the HPC space for several years, but the technology has wider 
applications in other aspects of computing. Large enterprise distributed systems rely on 
messaging middleware for efficient communications and remote procedure calls. The open 
source community leverages messaging middleware under some of the largest hyperscale 
systems including cloud management platforms, big data event processors, distributed 
analytics systems, and social media and messaging engines. With an affinity for fixed-length 
messages and an egalitarian topology, Data Vortex lends itself to the role of messaging 
transport for a variety of use-cases.  
 
This paper explores the application of the Data Vortex network topology for messaging 
middleware. The study outlines the exploration of the popular RabbitMQ messaging broker and 
message relay, delivery, and manipulation with the data vortex as transport. The paper 
examines the effort needed to bring Erlang/OTP and the RabbitMQ messaging middleware to 
Data Vortex and looks at initial performance comparisons with other network topologies in the 
same roles. Extending this detail, the work looks at the next stages for testing and likely best-
practice applications for the Data Vortex in messaging middleware systems given the initial data 
from RabbitMQ.  
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Introduction 
 
As the lines between high performance computing (HPC) and hyperscale architectures blur, we 
see the need for technology to bridge gaps and uplift areas for which those technologies were 
not originally intended. As the need for computational solutions to large problems and ever 
larger datasets grows, so does the need for efficient and optimized communications protocols 
and behaviors between components. While there has been tremendous growth in highly 
scalable networking systems in a variety of contexts, most of those efforts have focused on 
delivering parallel computing applications efficiently and with reduced latency. 
 



One often overlooked space for optimization, however, is in generic messaging between 
disparate applications and frameworks. This is the paradigm underlying most hyperscale 
workloads and particularly beneath microservice systems architectures. While there has been 
an explosion in messaging middleware as a part of the BigData wave – bringing a wide variety 
of new commercial and open source implementations – there have not been large 
improvements on optimizing the underlying transport directly for a dedicated messaging 
workload. Improvements in high performance interconnects optimize for parallel computing 
cases and not for the generic publisher and consumer architectures needed in loosely coupled  
distributed computing workloads. 
 
Data Vortex is a new player in the high performance interconnect space, with impressive results 
for GFFT, HPCC, Graph500 Breadth First Search1, and other parallel computing benchmarks. We 
want to explore the viability for Data Vortex in this traditional messaging middleware space for 
disparate communications between de-coupled publishers and consumers with a variety of 
common messaging patterns. Data Vortex topology is optimized for small-packet sizes and 
provides an egalitarian and uniform scaling profile as nodes increase. This suggests a role for 
optimizing general-purpose messaging systems to make use of the Vortex topology for message 
delivery. This paper looks at Data Vortex in this light, by providing Data Vortex interfaces to a 
common open source message broker (RabbitMQ) and looking at the effort involved, initial 
performance data, and suggested next steps to continue the research. 
 

1 Test Design and Rationale 
 
We looked at a variety of common messaging patterns for streaming analytics, service-oriented 
and microservices architectures popular in hyperscale environments. One of the most common 
problems we see is in the scalability of messaging middleware in very large deployments where 
message properties vary by use-case and consumer. This varies widely from the traditional 
parallel computing effort with players like MPI because many of the characteristics of the 
message are not determined at creation but by the consumption of the message, and where 
publisher and consumer are tightly coupled. For general purpose, high performance and 
hyperscale messaging share common requirements like low-latency and high transport 
bandwidth. But the hyperscale use-cases require that consumers come and go without impact 
(or even notification) to publishers; both ordered and un-ordered delivery for the same 
message stream; a variety of durability attributes depending on the consumer, location, 
number of transport hops; disparate security controls, etc. To date, most messaging 
middleware software focuses on a subset of these requirements and generally relies on the 
performance of the transport layer only for latency and bandwidth. 
 
1.1 Rationale for Data Vortex 
 

                                                        
1 https://www.datavortex.com/performance/  



Since the Data Vortex provides a uniform, linear scaling model as nodes and switches increase, 
this could allow for some additional message requirements to move into the transport layer. 
For example, ordered message delivery could be enforced by the network itself and not rely on 
enveloping, multicast command and control announcements, and sliding windows. The goal of 
the project then, is to demonstrate the efficacy for the Data Vortex (DV) system for handling 
these message patterns as a possible avenue for development for both the platform and for 
messaging systems optimization in the future. Since this effort aims to solve problems which 
exist in current commercial and open source general purpose messaging middleware, we 
decided that augmenting one of the common players in this space would be a good starting 
point for the project and allow for immediate comparison with a large base of extent 
performance and configuration data from large deployments. 
 
1.2 Rationale for RabbitMQ 
 
RabbitMQ, an open source message broker implementing the Advanced Message Queueing 
Protocol (AMQP) and other protocols, is well-known for its ubiquity, ease of installation and 
configuration, and scalability in a variety of common deployment architectures. Implemented 
using the Open Telecom Platform (OTP) in Erlang, the platform is extensible and supports very 
high performance deployments for distributed computing systems. Designed for true general 
purpose messaging, RabbitMQ supports configuration for many messaging patterns and 
disparate durability and delivery characteristics as well.  
 
Because of its ubiquity and extensibility, we chose the platform to test for Data Vortex. The 
general project design is to deliver messages between RabbitMQ clusters using DV for 
transport, and to compare the initial results with another high performance interconnect: Full 
Data Rate (FDR) Infiniband. 
 
1.3 Test Harness Design and Implementation 
 
Figure 1 shows the structure for the testing. Leveraging 4 nodes of an 8 node Data Vortex 
machine and the management node for the Data Vortex system, we construct two 3-node 
RabbitMQ clusters. The clusters are configured to provide AMQP messaging exchanges and 
queues on the DV nodes and configuration, management, and reporting on the DV 
management node. Docker containers provide standardized RabbitMQ and Erlang deployments 
across all nodes2. 
  

                                                        
2 Detailed configuration data – including configuration files, container construction scripts, all results files, and 
code for all of the project tools and tests are available through the Jupyter notebook for the project. See the 
references section for details on accessing the notebook. 



 
Figure 1: Data Vortex Test Harness 

1.3.1 H3 Test Harness Message Flow 
 
Using a range of message sizes (8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 
32768, 65536, 131072 bytes) measure performance sending messages across the network and 
storing into RabbitMQ queues. RabbitMQ is configured using topic exchanges with distributed 
queues according to the layout in Figure 2. Queues are non-persistent and distributed using 
subtopics, where “.A” queues are on node1 and “.B” queues are on node2. The topic exchange 
configuration allows AMQP delivery on both of the cluster nodes. Each transport type under 
testing uses a dedicated exchange with like queue configuration beneath. One additional node 
(in our testing, this is the systems management node for the Data Vortex system) provides 
RabbitMQ command and control, configuration, management, and statistics collection and 
display functionality.  
 
Functional flow for the system under test (SUT) works as follows: 

1. Construct messages on sending nodes. For the SUT, these are the brokers in the other 
cluster, e.g. rabbit1 cluster sends to rabbit0 cluster. 

2. Send messages to receiving brokers across the transport under test (Infiniband, DV). 
3. Record and persist message delivery performance across the transport and into the 

RabbitMQ queue. 
4. Confirm that the message delivered matches the message sent (bytes, md5sum) 
5. Reset AMQP brokers to clear available memory and prepare for the next run. 

 

RabbitMQ	Cluster	0 RabbitMQ	Cluster	1



Specific tests are outlined in the sections below and are repeated for both Infiniband and Data 
Vortex. 
 
 

 
Figure 2: AMQP and Broker Exchange and Queue Structure 

1.3.2 H3 Test Harness Implementation Details 
 
Since the nature of the test analyzes network behavior and performance, we deliberately 
avoided any persistence in the message path. This required large memory footprints available 
both to our SUT software and to RabbitMQ brokers to hold and account for messages during 
the test runs. As a result, the number of messages transported during each test decreases as 
the message size changes. This conserves available memory and ensures that we run the tests 
long enough to reach steady state, but that we would not exhaust all available memory 
resources on the nodes. We felt strongly that we needed to run the tests for a longer period of 
time, and did not want to involve a potential bottleneck from slow queue draining on the 
consumer side. This meant we terminated the testing with messages still in the queues on the 
receiving brokers. We then drained and reset queues between each run to clear memory for 
new messages and to reset garbage collection within the erlang VM. 
 
Table 1 shows the message sizes, number of test iterations, and number of messages sent to 
topic exchanges and queues in each iteration. 
 



Message Size (bytes) Number of Messages Delivered3 Test Iterations 
8 20,000,000 2 
16 
32 
64 
128 
256 
512 
1024 
2048 10,000,000 
4096 
8192 
16384 4,000,000 4 
32768 3,000,000 
65536 1,700,000 6 
131072 600,000 8 

Table 1: Test Run Configuration 

2 Software Test Implementation and Feature Parity Analysis 
 
The Data Vortex API is written for parallel computing. While expected, this means that there 
are expectations and assumption with regards to API usage in the client application which make 
some integration efforts like ours more difficult. The DV API structure assumes a synchronicity 
between publisher and consumers by node and message, for example. This means that it is not 
simple for to attach additional publishers and consumers at will because running DV 
applications define these parameters for sending and receiving at initialization. This is not a 
barrier to implementing general messaging paradigms, but we call it out here since it had 
implications on the sorts of message patterns we could implement readily for the study. We 
elected not to implement true publish/subscribe or affinity subscription messaging for this test 
and instead utilized queued messages with brokers as message final destinations. While we did 
implement consumers outside the SUT, their purpose was simply to remove messages from 
queues and to confirm that the messages matched end-to-end. The performance of these 
consumers is not recorded or reported for this project. 
 
The DV topology leverages 64-bit words which can be aggregated by chunking for delivering 
larger messages. Where RabbitMQ does not limit message size (beyond the capabilities of the 
underlying operating system) and permits variable message sizes in queues and exchanges, the 

                                                        
3 The number of messages changes here solely as a function of available memory consumption on the receiving 
broker nodes. Our DV system had 100G of memory allocated for RabbitMQ. Running over memory allocation 
results in RabbitMQ invoking automated persistence which skews results. For this reason, we deliberately made 
the decision to manipulate memory by message count and adjusting the RabbitMQ high-watermark for choosing to 
invoke message persistence in the cluster. 



Data Vortex does not. To implement variable size tests we ran independent tests of fixed sizes. 
Implementing variable length messages for Data Vortex is possible, but the scope for that effort 
went beyond what was reasonable development for this analysis. The DV linear scaling model 
makes the performance (once measured) fully predictable however, so this should not affect 
performance if variable-length messaging comes to the API. 
 
Communications with RabbitMQ (sending and receiving) leverages TCP sockets. We accepted 
this limitation for our testing as well and deliver messages into RabbitMQ exchanges using the 
loopback TCP binding after the message has already moved across the network for DV. Since 
Infiniband implements a full TCP/IP stack (IPoIB), those tests connected from the source 
brokers to the destination brokers using a standard networked TCP connection. So the detailed 
message flow between nodes differs slightly between transport implementations as illustrated 
in Figure 3. 

 
Figure 3: SUT Transport Implementation 

2.1 Software Development for Data Vortex 
 
Overall, the DV API is straightforward and implemented according to published design. 
Available only in C, however, means that modern integrations from higher level and functional 
languages will require C bindings or additional effort to provide native APIs for those languages. 
For our test implementation, we chose to leverage a C-native AMQP library for interfacing with 
RabbitMQ on the same node rather than working to develop directly in Erlang. This allowed the 
team to implement the DV and AMQP calls directly without the added overhead of additional 
Erlang-to-C bindings. 
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2.2 Feature Parity for Open Source Messaging Middleware 
 
2.2.1 Asynchronous Architectures 
 
Currently, loosely-coupled, asynchronous applications using the DV API is not possible. This did 
not hinder our efforts once we understood the situation, but substantial changes would be 
required for a production implementation with a scale-out architecture. The hardware design 
of Vortex Interface Cards (VICs) and switches does not presume this tight coupling however, so 
the effort to provide for general messaging and independent consumers and producers should 
be straightforward for a future release of the Data Vortex API. 
 
2.2.2 Software Development Feature Parity 
 
Most modern open source messaging systems leverage java, scala, python, nodeJS, go, or 
erlang. Most high performance computing (HPC) parallel messaging applications utilize C, C++, 
or Fortran. Since Data Vortex has its pedigree in HPC systems and applications, it lacks direct 
support for higher level languages and cloud native design patterns. We deliberately 
implemented the RabbitMQ brokers in Docker containers and used Python for the Infiniband 
transport tests as a means to evaluate how well the Data Vortex hardware integrates with 
hyperscale development techniques and common software deployment mechanisms. 
 
The Data Vortex system under test worked well with interactions between node-local 
applications and containerized applications (like RabbitMQ). Likewise, performance for bridged 
containers and the interaction between the C DV API and containerized AMQP socket 
communications was very good. We did not detect any bugs in either the API or in the 
container configurations. Our initial configurations for Docker and the AMQP/DV API interfacing 
worked as expected. We do not see the HPC pedigree as a barrier to adoption for open source 
software leveraging the platform, but as a condition that must be managed for any continued 
efforts. 
 

3 Performance Analysis 
 
The system under test looked at comparative tests leveraging FDR Infiniband and Data Vortex 
interconnects between nodes across a range of message sizes from 8 bytes to 128 kilobytes. 
The goal of the project is not to determine if any particular transport is better than another, but 
to analyze efficacy of an interconnect for general purpose messaging middleware. Both 
interconnects were able to sustain message rates per node much higher than those observed in 
the published “RabbitMQ 1M Messages/sec Record” held by Pivotal on Google Cloud Platform.4 

                                                        
4 https://content.pivotal.io/blog/rabbitmq-hits-one-million-messages-per-second-on-google-compute-engine With 
30 nodes in the cluster, each node sustained approximately 43,404 ingress messages/sec for the duration of the 
benchmark once steady state was obtained. Our RabbitMQ configuration mirrors many aspects of theirs (with an 
admittedly smaller number of nodes). 



 
For this paper we will look at 8, 256, 2048, and 8192 byte messages. The entire dataset and 
analysis is available through the project jupyter notebook5. 
 
 
3.1 Comparison Details  
 
One of the artifacts of the transport differences is the means by which messages are consumed. 
Since the implementation for Data Vortex is synchronous, the application must poll a buffer to 
retrieve messages. Threads pulling messages from the DV network convert chunked messages 
into single AMQP messages and push them onto a local socket for handling by RabbitMQ. This 
means that most poll intervals are empty and occasionally we see large bursts of activity as the 
receive buffer fills. Unfortunately, this means that a normal “messages/sec” plot does not show 
the actual behavior of the DV network. As a result, the plot of message rates is smoothed as a 
moving average to better show when the system is actually handling active messages and not 
polling an empty buffer6.  
 
The message rate plots for this discussion show calculations at the point where messages are 
removed from VIC SRAM registers and pushed into node memory buffers. As we moved 
through the testing and messages sizes increased, we encountered large bottlenecks in threads 
pushing messages into RabbitMQ through the local socket which resulted in buffer overruns 
between DV VIC and node memory. These IO waits between memory structures show marked 
performance degradation after the Data Vortex network, and so we are not including those 
timings in the interconnect comparisons below. We do illustrate the degradation in the next 
discussion. 
 
3.2 General Observations 
 
Multiprocessing python performs well over Infiniband transport, with our test harness routinely 
achieving sustained rates well above 60,000 messages/sec per node. This represents better 
than 27% improvement over the Pivotal record for 1M messages/second. We consider this 
world class performance and adequately represents high performance throughput for 
RabbitMQ. We were not able to achieve the same level of performance using the C AMQP API 
directly with threads and so we do not expect the same overall performance for our test 
harness versus the python Infiniband implementation. The C API can achieve higher 
performance using multiprocessing, but the Data Vortex API does not support multiprocessing 
access, so a threaded model was all that was available to us for these tests. 
 

                                                        
5 http://providentiaworldwide.com/projects/DV/notebooks/DataVortex_Analysis.ipynb 
6 Better accounting to show “traditional” views of message rates is a topic we have brought to the Data Vortex 
team, but is not available for this paper.  



That said, the Data Vortex network performs very well for message delivery between nodes and 
was never a bottleneck in our testing. The comparisons below call out specifics as we move 
through message sizes7. 
 
3.3 8 Byte Performance 
 
Data Vortex, with nearly all samples over 800,000 messages/sec performs more than 5 times 
better than the Infiniband tests. 
 
3.3.1 8B FDR Infiniband 
 

  
 
3.3.2 8B Data Vortex 

  
 

                                                        
7 The Jupyter notebook has results for all of the tested message sizes and links to github for the configuration 
details of RabbitMQ and all software developed for the tests. 



3.4 256 Byte Performance 
 
FDR Infiniband sustains performance of about 130,000 messages/sec across all runs, with the 
majority of samples above 200,000 for Data Vortex. Where the DV requires chunking messages 
into 64 bit words, this means that 32 messages are transferred for any single 256 byte message 
in the python implementation. Performance is still nearly twice that of the Infiniband 
implementation. 
3.4.1 256B FDR Infiniband 

  
3.4.2 256B Data Vortex 

  
 
3.5 2048 Byte Performance 
 
Data Vortex performance continues to average twice that for InfiniBand.  2K messages require 
256 words for each single message in the traditional implementation. The affinity in the DV 
network for small, efficient messages bears out clearly as message size increases, though the 



memory requirements for chunk reassembly increase dramatically when compared with the 
FDR test harness. As tests continued, memory management on the SUT became more difficult – 
with overruns resulting in failed test iterations and buffer size adjustments. 
 
3.5.1 2K FDR Infiniband 

 
 
3.5.2 2K Data Vortex 

  
 
3.6 8192 Byte Performance 
 
While FDR continues to perform very well, the Data Vortex also continues to maintain nearly 
twice the performance. Memory buffer overruns continued to be problematic during our test 



runs and we exposed an anomaly in the DV API where it sometimes required additional polling 
loops to retrieve all chunks successfully8. 
3.6.1 8K FDR Infiniband 

 
 
3.6.2 8K Data Vortex 

  
 
3.7 131072 Byte Performance 
 
For 128K messages, we see the Data Vortex continuing to deliver linear performance against 
other message sizes. With 16,384 64-bit words per RabbitMQ message, the sustained 
performance of over 10x that of FDR shows the benefit of the topology. We do not understand 

                                                        
8 While this behavior was not a show-stopper for our effort, it definitely made progress confusing as we were 
unsure if we were experiencing a bug from our memory management or unexpected behavior from the DV 
interaction. We are currently investigating the behavior with the Data Vortex team to see if there may be 
additional improvements from tuning in this area. 



at this phase why the DV interconnect performance for 128K improves dramatically over the 
previous runs, but the values shown are consistent across 8 runs. However, due to memory 
constraints, each run could move only 600,000 messages. We suspect that if we were able to 
move millions of messages in a single run, we might see a natural flattening with the longer run 
rate. We cannot test this however, without additional memory in the cluster nodes. 
3.7.1 128K FDR Infiniband 

  
3.7.2 128K Data Vortex 

 
 
3.8 AMQP vs DV Message Performance 
 
As the tests progressed, it became clear that we were pushing against a bottleneck with regards 
to delivery of messages using the AMQP C API. The resulting behavior manifested in larger 
required buffer sizes to facilitate message reassembly and retention between the DV VIC SRAM 
registers and local node DRAM. Eventually the AMQP performance reached a crawl. For future 
work, investigating an alternative to TCP socket delivery mechanisms could prove invaluable for 



overall performance improvements for distributed computing and streaming analytics 
applications. 
 
The table below illustrates the relative performance between sending messages on the DV 
interconnect between physical nodes and AMQP through a local socket. We illustrate the 256B 
and 128K examples, but all data is available in the project notebook. 
 

 
Table 2: AMQP vs DV Message Send Rates 

4 General Analysis and Conclusions 
 
The Data Vortex interconnect topology delivers on its claims of uniform scalability and 
predictable message behavior for small packets. Likewise, the platform API is well-documented 
and integrates easily into traditional HPC parallel computing paradigms and design patterns. 
The interconnect delivers far above the capabilities of current open source AMQP 
implementations on the same hardware – even when optimized for parallel task management 
and resources. 
 
However, the same legacy in parallel computing presents challenges for adopting a variable 
length, loosely coupled architecture for general purpose, stream analytics, and big data 
processing pipelines and workflows. To see real improvements in open source messaging 
middleware, the right approach would be to develop native APIs for functional and higher-level 
languages as a means of wider adoption for the Data Vortex VIC. 
 
4.1 Continued Efforts 
 
Messaging middleware underlies most of the modern platform infrastructure, container 
architectures, and distributed computing platforms in the world. It has only occasionally been 
the recipient of optimizations despite its 40 year history, and rarely seen hardware 
optimizations tuned directly to messaging needs. Implementing a native API to solve messaging 
middleware problems and to migrate messaging patterns and primitives into the network could 
dramatically improve performance and reduce operational expenses for traditional messaging 
systems. We recommend continued work in this and similar projects to investigate truly 
asynchronous and asymmetric messaging atop the Data Vortex network. 
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