
Vortex-topology Messaging: Data Vortex for
high performance middleware

Arno Kolster, Providentia Worldwide, San Francisco, CA, USA
S. Ryan Quick, Providentia Worldwide, Fredericksburg, VA, USA

Abstract

Data Vortex has made waves in the HPC space for several years, but the technology has wider
applications in other aspects of computing. Large enterprise distributed systems rely on
messaging middleware for efficient communications and remote procedure calls. The open
source community leverages messaging middleware under some of the largest hyperscale
systems including cloud management platforms, big data event processors, distributed
analytics systems, and social media and messaging engines. With an affinity for fixed-length
messages and an egalitarian topology, Data Vortex lends itself to the role of messaging
transport for a variety of use-cases.

This paper explores the application of the Data Vortex network topology for messaging
middleware. The study outlines the exploration of the popular RabbitMQ messaging broker and
message relay, delivery, and manipulation with the data vortex as transport. The paper
examines the effort needed to bring Erlang/OTP and the RabbitMQ messaging middleware to
Data Vortex and looks at initial performance comparisons with other network topologies in the
same roles. Extending this detail, the work looks at the next stages for testing and likely best-
practice applications for the Data Vortex in messaging middleware systems given the initial data
from RabbitMQ.

Keywords: data vortex, messaging middleware, rabbitmq, high performance computing

Introduction

As the lines between high performance computing (HPC) and hyperscale architectures blur, we
see the need for technology to bridge gaps and uplift areas for which those technologies were
not originally intended. As the need for computational solutions to large problems and ever
larger datasets grows, so does the need for efficient and optimized communications protocols
and behaviors between components. While there has been tremendous growth in highly
scalable networking systems in a variety of contexts, most of those efforts have focused on
delivering parallel computing applications efficiently and with reduced latency.

One often overlooked space for optimization, however, is in generic messaging between
disparate applications and frameworks. This is the paradigm underlying most hyperscale
workloads and particularly beneath microservice systems architectures. While there has been
an explosion in messaging middleware as a part of the BigData wave – bringing a wide variety
of new commercial and open source implementations – there have not been large
improvements on optimizing the underlying transport directly for a dedicated messaging
workload. Improvements in high performance interconnects optimize for parallel computing
cases and not for the generic publisher and consumer architectures needed in loosely coupled
distributed computing workloads.

Data Vortex is a new player in the high performance interconnect space, with impressive results
for GFFT, HPCC, Graph500 Breadth First Search1, and other parallel computing benchmarks. We
want to explore the viability for Data Vortex in this traditional messaging middleware space for
disparate communications between de-coupled publishers and consumers with a variety of
common messaging patterns. Data Vortex topology is optimized for small-packet sizes and
provides an egalitarian and uniform scaling profile as nodes increase. This suggests a role for
optimizing general-purpose messaging systems to make use of the Vortex topology for message
delivery. This paper looks at Data Vortex in this light, by providing Data Vortex interfaces to a
common open source message broker (RabbitMQ) and looking at the effort involved, initial
performance data, and suggested next steps to continue the research.

1 Test Design and Rationale

We looked at a variety of common messaging patterns for streaming analytics, service-oriented
and microservices architectures popular in hyperscale environments. One of the most common
problems we see is in the scalability of messaging middleware in very large deployments where
message properties vary by use-case and consumer. This varies widely from the traditional
parallel computing effort with players like MPI because many of the characteristics of the
message are not determined at creation but by the consumption of the message, and where
publisher and consumer are tightly coupled. For general purpose, high performance and
hyperscale messaging share common requirements like low-latency and high transport
bandwidth. But the hyperscale use-cases require that consumers come and go without impact
(or even notification) to publishers; both ordered and un-ordered delivery for the same
message stream; a variety of durability attributes depending on the consumer, location,
number of transport hops; disparate security controls, etc. To date, most messaging
middleware software focuses on a subset of these requirements and generally relies on the
performance of the transport layer only for latency and bandwidth.

1.1 Rationale for Data Vortex

1 https://www.datavortex.com/performance/

Since the Data Vortex provides a uniform, linear scaling model as nodes and switches increase,
this could allow for some additional message requirements to move into the transport layer.
For example, ordered message delivery could be enforced by the network itself and not rely on
enveloping, multicast command and control announcements, and sliding windows. The goal of
the project then, is to demonstrate the efficacy for the Data Vortex (DV) system for handling
these message patterns as a possible avenue for development for both the platform and for
messaging systems optimization in the future. Since this effort aims to solve problems which
exist in current commercial and open source general purpose messaging middleware, we
decided that augmenting one of the common players in this space would be a good starting
point for the project and allow for immediate comparison with a large base of extent
performance and configuration data from large deployments.

1.2 Rationale for RabbitMQ

RabbitMQ, an open source message broker implementing the Advanced Message Queueing
Protocol (AMQP) and other protocols, is well-known for its ubiquity, ease of installation and
configuration, and scalability in a variety of common deployment architectures. Implemented
using the Open Telecom Platform (OTP) in Erlang, the platform is extensible and supports very
high performance deployments for distributed computing systems. Designed for true general
purpose messaging, RabbitMQ supports configuration for many messaging patterns and
disparate durability and delivery characteristics as well.

Because of its ubiquity and extensibility, we chose the platform to test for Data Vortex. The
general project design is to deliver messages between RabbitMQ clusters using DV for
transport, and to compare the initial results with another high performance interconnect: Full
Data Rate (FDR) Infiniband.

1.3 Test Harness Design and Implementation

Figure 1 shows the structure for the testing. Leveraging 4 nodes of an 8 node Data Vortex
machine and the management node for the Data Vortex system, we construct two 3-node
RabbitMQ clusters. The clusters are configured to provide AMQP messaging exchanges and
queues on the DV nodes and configuration, management, and reporting on the DV
management node. Docker containers provide standardized RabbitMQ and Erlang deployments
across all nodes2.

2 Detailed configuration data – including configuration files, container construction scripts, all results files, and
code for all of the project tools and tests are available through the Jupyter notebook for the project. See the
references section for details on accessing the notebook.

Figure 1: Data Vortex Test Harness

1.3.1 H3 Test Harness Message Flow

Using a range of message sizes (8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072 bytes) measure performance sending messages across the network and
storing into RabbitMQ queues. RabbitMQ is configured using topic exchanges with distributed
queues according to the layout in Figure 2. Queues are non-persistent and distributed using
subtopics, where “.A” queues are on node1 and “.B” queues are on node2. The topic exchange
configuration allows AMQP delivery on both of the cluster nodes. Each transport type under
testing uses a dedicated exchange with like queue configuration beneath. One additional node
(in our testing, this is the systems management node for the Data Vortex system) provides
RabbitMQ command and control, configuration, management, and statistics collection and
display functionality.

Functional flow for the system under test (SUT) works as follows:

1. Construct messages on sending nodes. For the SUT, these are the brokers in the other
cluster, e.g. rabbit1 cluster sends to rabbit0 cluster.

2. Send messages to receiving brokers across the transport under test (Infiniband, DV).
3. Record and persist message delivery performance across the transport and into the

RabbitMQ queue.
4. Confirm that the message delivered matches the message sent (bytes, md5sum)
5. Reset AMQP brokers to clear available memory and prepare for the next run.

RabbitMQ	Cluster	0 RabbitMQ	Cluster	1

Specific tests are outlined in the sections below and are repeated for both Infiniband and Data
Vortex.

Figure 2: AMQP and Broker Exchange and Queue Structure

1.3.2 H3 Test Harness Implementation Details

Since the nature of the test analyzes network behavior and performance, we deliberately
avoided any persistence in the message path. This required large memory footprints available
both to our SUT software and to RabbitMQ brokers to hold and account for messages during
the test runs. As a result, the number of messages transported during each test decreases as
the message size changes. This conserves available memory and ensures that we run the tests
long enough to reach steady state, but that we would not exhaust all available memory
resources on the nodes. We felt strongly that we needed to run the tests for a longer period of
time, and did not want to involve a potential bottleneck from slow queue draining on the
consumer side. This meant we terminated the testing with messages still in the queues on the
receiving brokers. We then drained and reset queues between each run to clear memory for
new messages and to reset garbage collection within the erlang VM.

Table 1 shows the message sizes, number of test iterations, and number of messages sent to
topic exchanges and queues in each iteration.

Message Size (bytes) Number of Messages Delivered3 Test Iterations
8 20,000,000 2
16
32
64
128
256
512
1024
2048 10,000,000
4096
8192
16384 4,000,000 4
32768 3,000,000
65536 1,700,000 6
131072 600,000 8

Table 1: Test Run Configuration

2 Software Test Implementation and Feature Parity Analysis

The Data Vortex API is written for parallel computing. While expected, this means that there
are expectations and assumption with regards to API usage in the client application which make
some integration efforts like ours more difficult. The DV API structure assumes a synchronicity
between publisher and consumers by node and message, for example. This means that it is not
simple for to attach additional publishers and consumers at will because running DV
applications define these parameters for sending and receiving at initialization. This is not a
barrier to implementing general messaging paradigms, but we call it out here since it had
implications on the sorts of message patterns we could implement readily for the study. We
elected not to implement true publish/subscribe or affinity subscription messaging for this test
and instead utilized queued messages with brokers as message final destinations. While we did
implement consumers outside the SUT, their purpose was simply to remove messages from
queues and to confirm that the messages matched end-to-end. The performance of these
consumers is not recorded or reported for this project.

The DV topology leverages 64-bit words which can be aggregated by chunking for delivering
larger messages. Where RabbitMQ does not limit message size (beyond the capabilities of the
underlying operating system) and permits variable message sizes in queues and exchanges, the

3 The number of messages changes here solely as a function of available memory consumption on the receiving
broker nodes. Our DV system had 100G of memory allocated for RabbitMQ. Running over memory allocation
results in RabbitMQ invoking automated persistence which skews results. For this reason, we deliberately made
the decision to manipulate memory by message count and adjusting the RabbitMQ high-watermark for choosing to
invoke message persistence in the cluster.

Data Vortex does not. To implement variable size tests we ran independent tests of fixed sizes.
Implementing variable length messages for Data Vortex is possible, but the scope for that effort
went beyond what was reasonable development for this analysis. The DV linear scaling model
makes the performance (once measured) fully predictable however, so this should not affect
performance if variable-length messaging comes to the API.

Communications with RabbitMQ (sending and receiving) leverages TCP sockets. We accepted
this limitation for our testing as well and deliver messages into RabbitMQ exchanges using the
loopback TCP binding after the message has already moved across the network for DV. Since
Infiniband implements a full TCP/IP stack (IPoIB), those tests connected from the source
brokers to the destination brokers using a standard networked TCP connection. So the detailed
message flow between nodes differs slightly between transport implementations as illustrated
in Figure 3.

Figure 3: SUT Transport Implementation

2.1 Software Development for Data Vortex

Overall, the DV API is straightforward and implemented according to published design.
Available only in C, however, means that modern integrations from higher level and functional
languages will require C bindings or additional effort to provide native APIs for those languages.
For our test implementation, we chose to leverage a C-native AMQP library for interfacing with
RabbitMQ on the same node rather than working to develop directly in Erlang. This allowed the
team to implement the DV and AMQP calls directly without the added overhead of additional
Erlang-to-C bindings.

Compute06
Python

pika AMQP 0.9

Infiniband

Compute04
Erlang RabbitMQ 3.73

topic exchange
bound topic

distributed queue

IPoIB

5672/tcp

Compute07
Python

pika AMQP 0.9

Compute05
Erlang RabbitMQ 3.73

topic exchange
bound topic

distributed queue

IPoIB

5672/tcp

Data Vortex

Compute06
DV Send Multi
C AMQP 0.9

Erlang RabbitMQ 3.73

Compute04

loopback: 5672/tcp

Compute07
DV Send Multi
C AMQP 0.9

Erlang RabbitMQ 3.73

DV

DV

DV Receive Multi
C AMQP 0.9

topic exchange
bound topic

Distributed queue

Compute05

loopback: 5672/tcp
DV Receive Multi

C AMQP 0.9
topic exchange

bound topic
Distributed queue

2.2 Feature Parity for Open Source Messaging Middleware

2.2.1 Asynchronous Architectures

Currently, loosely-coupled, asynchronous applications using the DV API is not possible. This did
not hinder our efforts once we understood the situation, but substantial changes would be
required for a production implementation with a scale-out architecture. The hardware design
of Vortex Interface Cards (VICs) and switches does not presume this tight coupling however, so
the effort to provide for general messaging and independent consumers and producers should
be straightforward for a future release of the Data Vortex API.

2.2.2 Software Development Feature Parity

Most modern open source messaging systems leverage java, scala, python, nodeJS, go, or
erlang. Most high performance computing (HPC) parallel messaging applications utilize C, C++,
or Fortran. Since Data Vortex has its pedigree in HPC systems and applications, it lacks direct
support for higher level languages and cloud native design patterns. We deliberately
implemented the RabbitMQ brokers in Docker containers and used Python for the Infiniband
transport tests as a means to evaluate how well the Data Vortex hardware integrates with
hyperscale development techniques and common software deployment mechanisms.

The Data Vortex system under test worked well with interactions between node-local
applications and containerized applications (like RabbitMQ). Likewise, performance for bridged
containers and the interaction between the C DV API and containerized AMQP socket
communications was very good. We did not detect any bugs in either the API or in the
container configurations. Our initial configurations for Docker and the AMQP/DV API interfacing
worked as expected. We do not see the HPC pedigree as a barrier to adoption for open source
software leveraging the platform, but as a condition that must be managed for any continued
efforts.

3 Performance Analysis

The system under test looked at comparative tests leveraging FDR Infiniband and Data Vortex
interconnects between nodes across a range of message sizes from 8 bytes to 128 kilobytes.
The goal of the project is not to determine if any particular transport is better than another, but
to analyze efficacy of an interconnect for general purpose messaging middleware. Both
interconnects were able to sustain message rates per node much higher than those observed in
the published “RabbitMQ 1M Messages/sec Record” held by Pivotal on Google Cloud Platform.4

4 https://content.pivotal.io/blog/rabbitmq-hits-one-million-messages-per-second-on-google-compute-engine With
30 nodes in the cluster, each node sustained approximately 43,404 ingress messages/sec for the duration of the
benchmark once steady state was obtained. Our RabbitMQ configuration mirrors many aspects of theirs (with an
admittedly smaller number of nodes).

For this paper we will look at 8, 256, 2048, and 8192 byte messages. The entire dataset and
analysis is available through the project jupyter notebook5.

3.1 Comparison Details

One of the artifacts of the transport differences is the means by which messages are consumed.
Since the implementation for Data Vortex is synchronous, the application must poll a buffer to
retrieve messages. Threads pulling messages from the DV network convert chunked messages
into single AMQP messages and push them onto a local socket for handling by RabbitMQ. This
means that most poll intervals are empty and occasionally we see large bursts of activity as the
receive buffer fills. Unfortunately, this means that a normal “messages/sec” plot does not show
the actual behavior of the DV network. As a result, the plot of message rates is smoothed as a
moving average to better show when the system is actually handling active messages and not
polling an empty buffer6.

The message rate plots for this discussion show calculations at the point where messages are
removed from VIC SRAM registers and pushed into node memory buffers. As we moved
through the testing and messages sizes increased, we encountered large bottlenecks in threads
pushing messages into RabbitMQ through the local socket which resulted in buffer overruns
between DV VIC and node memory. These IO waits between memory structures show marked
performance degradation after the Data Vortex network, and so we are not including those
timings in the interconnect comparisons below. We do illustrate the degradation in the next
discussion.

3.2 General Observations

Multiprocessing python performs well over Infiniband transport, with our test harness routinely
achieving sustained rates well above 60,000 messages/sec per node. This represents better
than 27% improvement over the Pivotal record for 1M messages/second. We consider this
world class performance and adequately represents high performance throughput for
RabbitMQ. We were not able to achieve the same level of performance using the C AMQP API
directly with threads and so we do not expect the same overall performance for our test
harness versus the python Infiniband implementation. The C API can achieve higher
performance using multiprocessing, but the Data Vortex API does not support multiprocessing
access, so a threaded model was all that was available to us for these tests.

5 http://providentiaworldwide.com/projects/DV/notebooks/DataVortex_Analysis.ipynb
6 Better accounting to show “traditional” views of message rates is a topic we have brought to the Data Vortex
team, but is not available for this paper.

That said, the Data Vortex network performs very well for message delivery between nodes and
was never a bottleneck in our testing. The comparisons below call out specifics as we move
through message sizes7.

3.3 8 Byte Performance

Data Vortex, with nearly all samples over 800,000 messages/sec performs more than 5 times
better than the Infiniband tests.

3.3.1 8B FDR Infiniband

3.3.2 8B Data Vortex

7 The Jupyter notebook has results for all of the tested message sizes and links to github for the configuration
details of RabbitMQ and all software developed for the tests.

3.4 256 Byte Performance

FDR Infiniband sustains performance of about 130,000 messages/sec across all runs, with the
majority of samples above 200,000 for Data Vortex. Where the DV requires chunking messages
into 64 bit words, this means that 32 messages are transferred for any single 256 byte message
in the python implementation. Performance is still nearly twice that of the Infiniband
implementation.
3.4.1 256B FDR Infiniband

3.4.2 256B Data Vortex

3.5 2048 Byte Performance

Data Vortex performance continues to average twice that for InfiniBand. 2K messages require
256 words for each single message in the traditional implementation. The affinity in the DV
network for small, efficient messages bears out clearly as message size increases, though the

memory requirements for chunk reassembly increase dramatically when compared with the
FDR test harness. As tests continued, memory management on the SUT became more difficult –
with overruns resulting in failed test iterations and buffer size adjustments.

3.5.1 2K FDR Infiniband

3.5.2 2K Data Vortex

3.6 8192 Byte Performance

While FDR continues to perform very well, the Data Vortex also continues to maintain nearly
twice the performance. Memory buffer overruns continued to be problematic during our test

runs and we exposed an anomaly in the DV API where it sometimes required additional polling
loops to retrieve all chunks successfully8.
3.6.1 8K FDR Infiniband

3.6.2 8K Data Vortex

3.7 131072 Byte Performance

For 128K messages, we see the Data Vortex continuing to deliver linear performance against
other message sizes. With 16,384 64-bit words per RabbitMQ message, the sustained
performance of over 10x that of FDR shows the benefit of the topology. We do not understand

8 While this behavior was not a show-stopper for our effort, it definitely made progress confusing as we were
unsure if we were experiencing a bug from our memory management or unexpected behavior from the DV
interaction. We are currently investigating the behavior with the Data Vortex team to see if there may be
additional improvements from tuning in this area.

at this phase why the DV interconnect performance for 128K improves dramatically over the
previous runs, but the values shown are consistent across 8 runs. However, due to memory
constraints, each run could move only 600,000 messages. We suspect that if we were able to
move millions of messages in a single run, we might see a natural flattening with the longer run
rate. We cannot test this however, without additional memory in the cluster nodes.
3.7.1 128K FDR Infiniband

3.7.2 128K Data Vortex

3.8 AMQP vs DV Message Performance

As the tests progressed, it became clear that we were pushing against a bottleneck with regards
to delivery of messages using the AMQP C API. The resulting behavior manifested in larger
required buffer sizes to facilitate message reassembly and retention between the DV VIC SRAM
registers and local node DRAM. Eventually the AMQP performance reached a crawl. For future
work, investigating an alternative to TCP socket delivery mechanisms could prove invaluable for

overall performance improvements for distributed computing and streaming analytics
applications.

The table below illustrates the relative performance between sending messages on the DV
interconnect between physical nodes and AMQP through a local socket. We illustrate the 256B
and 128K examples, but all data is available in the project notebook.

Table 2: AMQP vs DV Message Send Rates

4 General Analysis and Conclusions

The Data Vortex interconnect topology delivers on its claims of uniform scalability and
predictable message behavior for small packets. Likewise, the platform API is well-documented
and integrates easily into traditional HPC parallel computing paradigms and design patterns.
The interconnect delivers far above the capabilities of current open source AMQP
implementations on the same hardware – even when optimized for parallel task management
and resources.

However, the same legacy in parallel computing presents challenges for adopting a variable
length, loosely coupled architecture for general purpose, stream analytics, and big data
processing pipelines and workflows. To see real improvements in open source messaging
middleware, the right approach would be to develop native APIs for functional and higher-level
languages as a means of wider adoption for the Data Vortex VIC.

4.1 Continued Efforts

Messaging middleware underlies most of the modern platform infrastructure, container
architectures, and distributed computing platforms in the world. It has only occasionally been
the recipient of optimizations despite its 40 year history, and rarely seen hardware
optimizations tuned directly to messaging needs. Implementing a native API to solve messaging
middleware problems and to migrate messaging patterns and primitives into the network could
dramatically improve performance and reduce operational expenses for traditional messaging
systems. We recommend continued work in this and similar projects to investigate truly
asynchronous and asymmetric messaging atop the Data Vortex network.

5 References

256B Rabbit R1 256B Rabbit R2 256B Rabbit Avg 256B DV R1 256B DV R2 256B DV Avg Avg Difference
Mean 135,902.82 18,782.31 60,587.88 159,968.00 119,976.01 139,972.00 79,384.12
Std Dev 102,772.37 98,316.09 60,587.88 99,809.56 94,851.23 97,330.40 36,742.51

128K Rabbit R1 128K Rabbit R2 128K Rabbit Avg 128K DV R1 128K DV R2 128K DV Avg Avg Difference
Mean 3,599.28 3,799.24 3,699.26 278,500.82 284,590.99 281,545.90 277,846.64
Std Dev 1,732.26 1,633.55 1,682.90 213,264.60 207,119.34 210,191.97 208,509.07

RabbitMQ C AMQP Client Library. https://github.com/alanxz/rabbitmq-c (cloned from source
on 10 January 2018.

AMQP Specification. http://www.amqp.org/resources/download.

RabbitMQ Docker Container. Maintained by Docker Community and Pivotal Software.
https://hub.docker.com/r/_/rabbitmq/ (cloned from source on 10 January 2018).

Vortex Topology Messaging Project Notebook. Jupyter Notebook:
http://providentiaworldwide.com/projects/DataVortex/notebooks/DataVortexAnalysis.ipynb

Data Vortex C API. http://www.datavortex.com/programming/

Logan, Martin; Eric Merritt, Richard Carlsson. Erlang and OTP in Action. Manning Publications,
2011.

Roy, Gavin M. RabbitMQ in Depth. Manning Publications, 2018.

Nickoloff, Jeff. Docker in Action. Manning Publications, 2016.

