
Exploring DataVortex Systems for Irregular
Applications

Roberto Gioiosa, Antonino Tumeo, Jian Yin, Thomas Warfel
Pacific Northwest National Laboratory
{roberto.gioiosa, antonino.tumeo, jian.yin,

thomas.warfel}@pnnl.gov

David Haglin
Trovares Inc.

david@trovares.com

Santiago Betelu
Data Vortex Technologies Inc.

santiago.betelu@datavortex.com

Abstract—Emerging applications for data analytics and knowl-
edge discovery typically have irregular or unpredictable com-
munication patterns that do not scale well on parallel systems
designed for traditional bulk-synchronous HPC applications. New
network architectures that focus on minimizing (short) message
latencies, rather than maximizing (large) transfer bandwidths,
are emerging as possible alternatives to better support those
applications with irregular communication patterns. We explore
a system based upon one such novel network architecture,
the Data Vortex interconnection network, and examine how
this system performs by running benchmark code written for
the Data Vortex network, as well as a reference MPI-over-
Infiniband implementation, on the same cluster. Simple commu-
nication primitives (ping-pong and barrier synchronization), a
few common communication kernels (distributed 1D Fast Fourier
Transform, breadth-first search, Giga-Updates Per Second) and
three prototype applications (a proxy application for simulating
neutron transport-”SNAP”, a finite difference simulation for
computing incompressible fluid flow, and an implementation of
the heat equation) were all implemented for both network models.
The results were compared and analyzed to determine what
characteristics make an application a good candidate for porting
to a Data Vortex system, and to what extent applications could
potentially benefit from this new architecture.

Index Terms—Data Vortex; irregular application; high-
performance computing;

I. INTRODUCTION

Knowledge-discovery applications in many fields (e.g.
bioinformatics, cybersecurity, and machine learning), and the
analysis of complex social, transportation, or communication
networks typically employ algorithms processing enormous
datasets that require large-scale clusters to provide sufficient
memory and the necessary performance. These algorithms typ-
ically use data structures built on pointers or linked-lists (such
as graphs, sparse matrices, unbalanced trees, or unstructured
grids) that result in irregular, asymmetric, and unpredictable
patterns for data access, control flow, and communications
[1]. Data can potentially be accessed from any node with
transaction sizes of only a few bytes, and very little computa-
tion is performed per access, making it difficult to partition
datasets across nodes in a load balanced manner. Current
clusters and supercomputers have been optimized for scientific
simulations where communications are generally predictable
or can be efficiently interleaved with computations. Their
processors implement advanced cache hierarchies that exploit
spatial and temporal locality to reduce access latencies and

quickly execute regular computation patterns. Their network
interconnects are optimized for bulk-synchronous applications
characterized by large, batched data transfers and well-defined
communication patterns. Clusters optimized for traditional
HPC applications rarely demonstrate the same scalability for
irregular applications.

Several custom large-scale hardware designs (e.g., Cray
XMT and Convey MX-100) [2], [3] have been proposed to
better cope with the requirements of irregular applications but
are too expensive for general use. Software runtime layers
(e.g., GMT, Grappa, Parallex, Active Pebbles) [4], [5], [6],
[7] have also looked into better support requirements of irreg-
ular applications by exploiting available hardware resources.
However, software runtime layers cannot fully compensate
for network limitations. Conventional network interconnects
only achieve high bandwidths with large data transfers, but
are easily congested with unpredictable data transfers and
remain one of the key limitations for efficiently executing these
applications on current cluster architectures.

In this paper, we evaluate a full implementation of a novel
network design, the Data Vortex architecture, in a real cluster
system. We perform our evaluation from the viewpoint of
a user wanting to explore a new system and understand
whether an eventual porting of existing applications or design
of new applications on this platform will bring performance
and/or programming benefits. The Data Vortex architecture
was originally proposed as a scalable low-latency intercon-
nection fabric for optical packet switched networks [8], [9].
Designed to operate with fine-grained packets (single word
payloads) to eliminate buffering, and employing a distributed
traffic-control mechanism [10], the Data Vortex switch is a
self-routed hierarchical architecture that promises congestion-
free scalable communication. The initial analysis work on the
optical version of the switch was limited to verifying the
feasibility of the design for optical networks [11], verifying
its reliability [12], [13], and verifying its robustness with a
variety of synthetic traffic patterns [14], [15]. The architecture
that we evaluate is built on an electronic implementation of
the Data Vortex Switch [16]. Each node in the cluster contains
a Vortex Interface Controller (VIC) PCI Express 3.0 card,
and is accessed through a dedicated Application Programming
Interface (API). Each VIC connects its node with the switch
and provides hardware acceleration for certain API functions,



including a dedicated memory to collect and prepare network
packets, and a Direct Memory Access (DMA) controller for
moving data across the PCI Express bus between the node and
the VIC. The architecture is fully functional.

Applications must be adapted to fully exploit the special
features of an alternative network; in some cases the algorithm
must be restructured. As we show in this work, several irreg-
ular algorithms easily map onto the Data Vortex programming
model and achieve considerable performance improvement
relative to a Message Passing Interface (MPI) implemen-
tation over Fourteen Data Rate (FDR) Infiniband, despite
having a slower physical interconnect. Other algorithms show
limited or no improvement compared to the reference MPI
implementation. One of our key contributions is describing
which algorithmic and implementation characteristics make an
application a good candidate for improving performance on a
Data Vortex system.

We performed our experiments on a 32-node cluster; each
node has dual Intel E5-2623v3 Haswell-EP processors (2
CPUs, 4 cores/CPU, 2 threads/core), 160 GB of main memory,
and both Data Vortex and Infiniband NICs. We ran a variety
of benchmarks including low-level communication tests (ping-
pong messaging, global barriers), basic kernels (”Giga Up-
dates Per Second” (GUPS), an FFT, and Breadth-First Search
(BFS)), and three representative applications (the SNAP mini-
app,1, an implementation of the heat equation, and a finite
difference solver for modeling 2D incompressible fluid flows).
To provide an “apples-to-apples” comparison, we compare
results from our Data Vortex implementations to MPI imple-
mentations of the same algorithms running on the same cluster,
but using a conventional MPI-over-Infiniband implementation.
We show that traditional applications that are regular or that
can be “regularized” through message destination aggregation
show little to no performance improvements on the DataVortex
network compared to MPI-over-Infiniband, but that irregular
applications with small computation-to-communication ratios
show considerable performance improvement when running
on the Data Vortex network.

In summary, this paper makes the following contributions:

• We analyze the Data Vortex hardware and software ar-
chitecture;

• We perform an analysis of the performance improvement
provided by Data Vortex system for data analytics and
irregular applications;

• We highlight which characteristics make an application
a good candidate for improving performance on Data
Vortex systems.

The rest of this paper is organized as follows. Section II
and III describe the Data Vortex Switch and the VIC, and
the programming model of the system. Section IV details our
system setup and provides information about the benchmarks
used. We show the test results of our evaluation in Sections V,
VI, and VII. Finally, Section X concludes this work.

1http://portal.nersc.gov/project/CAL/designforward.htm#SNAP

The Data Vortex Switch Topology

3/14/2016Data Vortex Technologies®/Interactic Holdings 5

Fig. 1: Data Vortex Switch. Normal paths, connecting nodes
from one cylinder to a nested one at the same height and,
rotationally, an element (angle) forward, are denoted in blue.
Deflection paths, connecting nodes in the same cylinder, an
angle forward, are denoted in green. Deflection signal lines
are denoted in red.

II. DATA VORTEX NETWORK ARCHITECTURE

The Data Vortex Network architecture is a congestion-free
packet-switched network. All packets have a 64-bit header
and carry a 64-bit payload. The system is composed of
two interacting elements: the Data Vortex Switch and the
Data Vortex VICs (Vortex Interface Controller - the network
interface). The Data Vortex switch implements a high-radix
interconnect that routes packets using a data flow technique
based on packet timing and position. The switching control is
distributed among multiple switching nodes in the structure,
avoiding a centralized controller and limiting the complexity
of the logic structures. The interconnect structure implements
a deflection or hot potato design, whereby a message packet is
routed through an additional output port rather than being held
in storage buffers until a desired output port is available. The
current implementation is an electronic version based upon an
earlier optical switch design.

The Data Vortex switch is organized as a multilevel struc-
ture; each level is composed of a richly interconnected set of
rings. With evenly-spaced levels and switching nodes on each
ring, the interconnect forms a three-dimensional cylindrical
structure composed of multiple nested cylinders, as shown
in Figure 1. Each switching node has a location identified
by three-dimensional cylindrical coordinates: radius, rotation
angle, and height. The radius identifies the exact cylinder
(routing level), the rotation angle identifies the position of the
switching node among all the switching nodes in the same
cylinder circumference, and the height is the position of the
node among the nodes along the same cylinder height. Denot-
ing with C the overall number of cylinders, with H the number
of nodes along the cylinder height, and with A the number of
nodes along the cylinder circumference, a node is identified by
the triplet (c, h, a). C scales with H as C = log2H+1, and the
number of nodes per cylinder is A×H . Packets are injected
into the nodes of the outermost cylinder, and are ejected from
the nodes of the innermost cylinder. Therefore, a data vortex
network with Nt = A×H input and output ports implements



PCIe
Interface

Packet
Formation

Packet 
Parsing

Group
Counters

VIC
registers

Surprise
FIFO

DV Memory
(QDR SRAM)

VIC

Host
CPU

Host
Memory

Node

Fig. 2: The Vortex Interface Controller (VIC). The VIC
interfaces the host to the Data Vortex Switch providing 32
MB of SRAM (DV Memory) and additional features such as
the group counters and a FIFO queue for Surprise packets.

N = A × H × C = A × H × (log2H + 1) nodes, and the
number of nodes scales with the number of ports as Ntlog2Nt.
Normal paths connect nodes of the same height in adjacent
cylinders, while deflection paths connect nodes of different
heights within the same cylinder. When packets enter a node
with coordinates (c, h, a), the c-th bit of the packet header is
compared with the most significant bit of the node’s height
coordinate (h). If the bits are equal, the packet is routed to a
node in an inner ring, and the rotation angle increments (i.e.,
at angle a + 1 in the inner cylinder circumference). If not, it
is routed with the same cylinder and rotationally incremented
at a different height. Once a packet reaches the innermost
cylinder (at the desired height), it is then routed around to
the target output port according to the angle. Contention is
resolved using deflection signals. A node has two inputs: a
node in the same cylinder and a node on the outer cylinder.
Whenever this node receives a packet from the node on the
same cylinder, the sending node also propagates a deflection
signal that blocks the node on the outer cylinder from sending
new data. Thus, contention is resolved by slightly increasing
routing latency (statistically by two hops) without need for
buffers.

Past research [9] has explored the use of the Data Vortex
topology for optical networks, leading to prototypes with up
to 12 input and 12 output ports [11]. Performance studies with
synthetic and realistic traffic patterns showed that the archi-
tecture maintained robust throughput and latency performance
even under nonuniform and bursty traffic conditions due to
inherent traffic smoothing effects [14], [15]. Our system’s Data
Vortex Switch is an electronic (not optical) implementation on
a set of Field Programmable Gate Arrays (FPGAs).

The Vortex Interface Controller (VIC) is a custom Network
Interface Controller for interfacing a cluster node to the Data
Vortex Switch; each cluster node has at least one VIC. Figure 2
shows the block diagram of the VIC. The current VIC is
implemented as a PCI-Express 3.0 board that integrates an
FPGA with 32 MB of Quad Data Rate Static Random Ac-
cess Memory (QDR SRAM), also called ”DV Memory”. DV
Memory is directly addressable for reading and writing from
both the network and from the cluster node (across the PCI

Express bus). While primarily used to buffer incoming network
data, it also allows outgoing packet headers and payloads to be
pre-cached across the PCI Express bus, as well as storing user-
level data structures. Because every VIC can address every DV
Memory location (local or remote) with the combination of
VIC ID and DV Memory address, the DV Memory can also be
used as a globally-addressable shared memory. The API allows
a programmer to specify where the header and payload come
from; the VIC FPGA handles the logic for getting packets to
and from the switch. In addition to the control logic for the
DV Memory interface, the VIC also provides hardware support
for two other API features: (packet) group counters, and a
network-addressable First In First Out (FIFO) input queue.
Group counters provide a means of counting how many data
words within a particular transfer are yet to be received by
the receiving VIC. Network transfers occur as individual 8-
byte words, and order of arrival is not guaranteed. To know
when a transfer has completed, the application programmer
must first declare the specific number of words that will be
received in a transaction by writing that value into a group
counter before the first data packet arrives. Incoming packets
for that transfer must explicitly refer to that particular group
counter, and as they arrive, the counter decrements toward
zero. An additional API call allows a program to wait until
a specific group counter reaches 0, or a timeout expires. The
current VIC implementation provides up to 64 group counters
in the current FPGA; one of these is presently reserved as a
scratch group counter for those situations where the counter
does not need to be checked, and another 2 are reserved for a
group barrier synchronization implementation.

The FIFO queue (also referred to as the “surprise packet”
queue in the Data Vortex API) allows each node within the
cluster to receive and buffer thousands of 8-byte messages un-
til ready to deal with them. DV Memory slots only store single
words, and only the last-written value can be read. Specific
addresses must be coordinated by the sender and receiver in
advance, and multiple nodes sending to the same destination
DV Memory slot must be coordinated to avoid overwriting
data. The FIFO queue provides for incoming unscheduled
(“surprise”) packets to be non-destructively buffered, although
message ordering across the network, even when sent from the
same node, is not guaranteed. The developer is responsible for
polling the status of the queue to know when messages have
arrived, and for handling the potential out-of-order messages
when reading from the queue. The VIC also provides two
Direct Memory Access (DMA) engines for transferring data
between the host memory, the VIC Memory, and the network.

III. PROGRAMMING MODEL

The Data Vortex API is a low-level interface to the VIC
components enabling multiple ways of sending packets across
the network to any individual VIC, including your own.
Each packet is composed of a 64-bit header and a 64-bit
payload. The header specifies the destination VIC, an optional
destination group counter, and and an address within the
destination VIC. The destination address at the destination



VIC can specify a VIC DV Memory slot, the ”suprise packet”
FIFO, or a specific group counter. Individual packets (header
plus payload) can be assembled within host memory and sent
directly from host memory to the network; when sending
multiple packets, one can either DMA headers and payloads
from host memory, pre-cached headers from DM Memory and
payload from host memory, or headers from host memory
and pre-cached payload from DV Memory. Upon arrival at
the destination, the header is normally discarded and the sent
value is written to the appropriate address. A few special
headers allow sending a “return header” as the payload, and
also allow a particular query value to be encoded in the header.
The receiving VIC reads the requested location encoded in
the header, uses the original payload as the header for a new
“reply” message, and uses the requested value as the payload
for the new message. The “reply” destination VIC does not
need to be the same as the original sending VIC.

Group counters are globally accessible, meaning that each
VIC can set not only his own group counters, but also the
group counters of other VICs. While this could potentially
allow a sending VIC to set the destination group counter before
sending a data transfer, the out-of-order packet arrival means
that the first data packet could arrive before the “set group
counter” control packet reaches the VIC. Even though the
transfer would complete, the destination VIC group counter
would never reach zero because the initial packet arrival is lost
when the “set group counter” control packet arrived. Typically
the developer will set up the communication by presetting a
group counter to the number of expected packets and invoke
a barrier. The current API provides such a synchronization
primitive that, as previously discussed, employs two reserved
group counters to implement a fast, whole system barrier.

As previously explained, the surprise FIFO provides another
way to send messages to a VIC without a pre-defined target
address on its DV Memory; this alone may be sufficient
for simple communications, or can also form the basis for
coordinating DV Memory usage between cluster nodes. This
ability to use the VIC’s DV memory for both addresses and
payloads also allows mechanisms whereby one VIC can send
a packet to another VIC such that the destination VIC’s DV
Memory content triggers assembly and transmission of a new
packet to another destination without any host intervention.

The API provides specific commands to exploit the VIC
DMA engines; the current DMA mechanism requires using
Linux Huge Memory Pages. Either 4 MB or 1GB HugeTLB
pages can be allocated for VIC DMA use at runtime (the 1GB
pages must also be reserved at boot time); these HugeTLB
pages can be used as the host-side source or destination for
VIC DV Memory DMA operations. The VIC provides a DMA
Table with 8192 entries to store the transactions to be executed
between host memory and DV memory; a single DMA trans-
action may span multiple table entries. A separate background
DMA process pulls incoming FIFO packet data from the VIC
into a circular buffer on the host as it becomes available so
that host-side checking for incoming FIFO data occurs quickly.
The VIC also pushes a list of zero-valued group counters to

a specific host memory location during idle PCIe cycles (via
reverse bus-master DMA) so end-of-transmission states can
be checked without incurring the latency of an explicit PCIe
read. DMA transfers to the VIC run up to 4 times faster than
direct writes, and DMA transfers from the VIC happen up to
8 times faster than direct reads. Incoming and outgoing DMA
transfers can be overlapped, and multi-buffered DMAs enable
better overlap of communication with host computations when
compared to direct reads and writes.

Direct translation of classic MPI primitives to the low level
primitives of the Data Vortex architecture is not always easy or
possible. Conversely, the Data Vortex API provides capabilities
not available in MPI. Thus, a developer may need to rethink
the way an algorithm operates, or how it is implemented, to
exploit the unique features of the interconnect.

IV. SYSTEM SETUP

We tested a 32-node cluster equipped with two Intel E5-
2623v3 Haswell-EP processors (4 cores with hyperthreading),
160 GB of main memory divided in two NUMA domains.
The cluster is equipped with both DataVortex and Infiniband
network adapters, as well as an Ethernet connection for system
management purposes. The system distribution is Red Hat
Linux with the Rocks 6.1.1 cluster environment, running the
2.6.32 64-bit SMP linux kernel. All applications are compiled
with gcc version 4.9.2. Data Vortex applications use dvapi
API library version 1.1, while MPI applications are linked
against openmpi message passing library version 1.8.3.

Most of the MPI benchmarks belong to well-know bench-
mark suites. We developed those that were not publicly
available. The Data Vortex applications have been developed
by our team. This is an initial porting and not necessarily
optimal. As we will see in the next sections, writing a Data
Vortex application that performs well requires restructuring the
algorithm to take advantage of Data Vortex hardware features.
A simple replacement of MPI primitives with Data Vortex
APIs does not generally yield satisfactory results.

V. MICRO-BENCHMARKS

We begin our evaluation of our Data Vortex system with a
few low-level benchmarks that characterize system behavior.
The goal of this section is to identify possible bottlenecks
and drive the development of the kernels and applications
presented in the next sections.

Ping-Pong Messaging This is a low-level exercise of fixed-
length back-and-forth messaging to measure the network band-
width visible to an application requiring round-trip communi-
cations. One node (sender) sends a fixed-length message to
a second node (receiver). The second node sends a message
from its memory back to the first node, while ensuring the
entire received message gets copied from the network adapter
into its local host memory.



0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

Ba
nd

w
id

th
 (

G
B/

s)

Number of words (8 bytes) transmitted (log)

DWr/NoCached
DWr/Cached

DMA/Cached
MPI

(a) Absolute Ping-Pong bandwidth

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14

%
 p

ea
k 

ba
nd

w
id

th

Number of words (8 bytes) transmitted (log)

DWr/NoCached
DWr/Cached

DMA/Cached
MPI

(b) Percentage of peak bandwidth

Fig. 3: Network bandwidth as function of the message size.

We perform 1,000,000 ping-pong exchanges between two
nodes with message lengths ranging from 1 word to 256k
64-bit words, directly writing message header and payload
from main memory to the network (DVWr/NoCached),
pre-caching message headers in part of the sending VICs
DV Memory (DVWr/Cached), and using DMA to send from
main memory with pre-cached headers and overlapping with
DMA from the VIC DV Memory into host main memory
(DMA/Cached). Note that, although the Data Vortex adapters
always transfer fixed-size packets (64-bit header and 64-bit
payload), data still need to be transferred over the PCI Express
in large transactions to hide the I/O latency. Figure 3a shows
that the Data Vortex network bandwidth when using direct
write is generally low and limited by the PCIe lane read
bandwidth (500 MB/s, only one lane is used). The bandwidth
is a little higher when the destination headers are cached
in the VIC’s memory because the traffic over the PCIe bus
is reduced. When using both DMA and caching headers in
memory, the network bandwidth is much higher and close to
the nominal peak bandwidth (4.4. GB/s) for large message
transfers. We noticed that the Infiniband network bandwidth
is higher than the Data Vortex bandwidth, especially for
message sizes between 32 and 128 words, or larger than
512 words. We believe that there are two main reasons for
these results. First, the Infiniband nominal peak bandwidth
(6.8 GB/s) is about 50% higher than the Data Vortex peak
bandwidth (4.4 GB/s). As shown in Figure 3b, the Data Votex
implementation achieves 99.4% of the peak performance
when transferring 256k words while the Infiniband network
only achieves about 72% of the peak bandwidth. We believe
that it is possible to achieve closer to peak bandwidth with
Infiniband as well, but with much larger messages (that do
not fit in the DV memory). Second, the MPI runtime performs
many optimizations (e.g., double buffering) for well-known
network transfer patterns such as Ping-Pong. The Data Vortex
runtime does not (currently) perform such optimizations
automatically. Even though VIC-to-VIC performance is good,

0

2

4

6

8

10

12

14

2 4 8 16 32

Ti
m

e 
(u

se
c)

Number of nodes

Data Vortex FastBarrier Infiniband

Fig. 4: Latency of global barrier at scale.

other bottlenecks can impact application-level performance.

Global Barrier Global barriers are a challenge for bulk
synchronous applications because of their limited scalability.
Indeed, Figure 4 shows that MPI global barriers over Infini-
band do not scale well, and that the time to complete a global
barrier increases considerably with the number of compute
nodes, especially when more than 8 nodes are involved.

The Data Vortex network provides hardware support for
fast global and subset barriers: most of the communication
(except for the initialization) is performed by the VICs
without involving the host processor. We compare two
implementations: the first (“Data Vortex”) is an intrinsic
within the current API and uses two group counters. The
second implementation (“Fast Barrier”) was developed in-
house and relies on all-to-all communication. The results in
Figure 4 show that, for Data Vortex, the time to complete the
global barrier does not vary much with increasing numbers
of compute nodes involved in the barrier. This indicates that
barriers on Data Vortex network are very scalable operations.



(a) Complete execution trace

(b) Zoom

Fig. 5: GUPS execution trace.

Lesson learned Our experiments show that the Data Vortex
network is not a simple replacement for MPI over Infiniband.
The Infiniband driver and MPI runtime are very mature
software, highly optimized over many years of research and
development. In contrast, the Data Vortex software stack is
new and lacks many optimizations. Nevertheless, this section’s
results show promise for applications that can be restructured
to exploit the hardware features.

VI. APPLICATIONS KERNELS

In this section we move to more complex application
kernels developed to stress particular computation or
communication patterns. These kernels constitute basic blocks
of larger applications, thus achieving good performance is
predictive of the final application’s performance.

GUPS Current processors and networks are optimized for
regular computation and memory/network traffic. As a re-
sult, even a small number of irregular or random accesses
can severely limit overall application performance. The Giga
Update Per Second (GUPS) benchmark has been designed to
measure memory and network performance in the extreme case
where all accesses are random. In GUPS, a distributed array of
elements is randomly updated, and a system is characterized
both by the size of the array that can be represented (total
number of elements), as well as the sustained rate at which
randomly selected elements can be updated. The initial value
of each element is randomly generated, but does not affect the
rate of updates. The update rate is measured as the average
number of memory locations that can be updated in one
second. In a single-node system, this benchmark measures
memory performance. For parallel systems, this benchmark
stresses the network because the elements are distributed over
multiple machines and any individual node could update any
particular element.

GUPS implementation rules are quite strict to avoid soft-
ware implementations that attempt to artificially regularize
irregular accesses. For example, the user is allowed to buffer
at most 1,024 accesses. This constraint limits the amount
of aggregation by destination often used to reduce network
latency. Figure 5a shows a tracing of the HPCC GUPS imple-
mentation based on MPI [17], obtained using the Extrae [18]

MPI instrumentation library. Figure 5b shows a close up in the
central part of the applications. In both plots, blue represents
computation, yellow lines depict messages between two nodes
(remote accesses) and the other colors represent MPI func-
tions. Figure 5b shows that there is no exploitable regularity
for aggregating messages directed to the same destination.

Our Data Vortex implementation takes advantage of the
VIC’s DV Memory to store the mapping between a range
of global addresses and the compute nodes where they are
physically stored. Another advantage comes from sending
multiple small messages across the network; this plays to the
strengths of the Data Vortex switch and does not congest the
network. Finally, we implemented an “aggregation at source”
scheme where multiple packets from the same compute node
(source) that are directed to multiple destination nodes can be
aggregated for transfer across the PCIe bus from host main
memory to the VIC’s DV Memory. Figure 6 presents the
number of updates per second for our Data Vortex and the
HPCC GUPS implementation. Figure 6a shows the number
of updates per second per single processing element. Ideally,
for weak scaling applications like GUPS, this value should
remain constant with the increase in the number of compute
nodes. Practically, however, network congestion and the
higher probability of accessing a remote memory location
often decreases this metric. This is evident for the HPCC
GUPS implementation running over Infiniband, where the
GUPS per processing element decrease constantly from 4
to 32 nodes. In contrast, the Data Vortex implementation
shows much more scalable results, with constant performance,
except for a reduction from 4 to 8 nodes. The net result is that
the aggregated GUPS value (Figure 6b) is much higher for
the Data Vortex implementation than for MPI-over-Infiniband.
Moreover, the performance gap between the Data Vortex and
the MPI implementation increases with increasing numbers
of compute nodes.

FFT-1D The Fast Fourier Transform is a basic block of many
scientific simulations. This kernel is very challenging because
of the multiple matrix transpose operations (“butterflies”) that
need to be performed at each stage. Depending on the stage
and how far data needs to be moved, these transpositions can
introduce data access irregularities at each stage in the FFT. If
a 2D or 3D FFT is performed, additional matrix transpositions
may be required to optimize memory distributions. For the
one-dimensional FFT benchmark, a discrete Fourier transform
is performed on one-dimensional data distributed over multiple
compute nodes. The size of the problem is defined by the
number of discrete points in the FFT. In our experiments we
use 233 randomly initialized points.

We implemented a Data Vortex version of the FFT-1D
benchmark and compare it with the HPCC MPI version [17].
In our Data Vortex implementation we take advantage of the
natural scatter/gather capabilities of the network to perform the
data transposition and redistribution operations. A partial row
of points can be loaded in the VIC’s memory and scattered
to many destination nodes very efficiently. We also take



0

10

20

30

40

50

4 8 16 32

Up
da

te
s 

pe
r 

se
co

nd
 (

M
UP

S)

Number of nodes

Data Vortex Infiniband

(a) GUPS per processing element.

0

200

400

600

800

1000

1200

1400

4 8 16 32

Up
da

te
s 

pe
r 

se
co

nd
 (

M
UP

S)

Number of nodes

Data Vortex Infiniband

(b) Aggregated GUPS

Fig. 6: GUPS

0

50

100

150

200

250

300

350

400

2 4 8 16 32

Ag
gr

eg
at

e 
G

FL
O

PS

Number of nodes

Data Vortex Infiniband

Fig. 7: FFT.

0

10

20

30

40

50

2 4 8 16 32

Ha
rm

on
ic

 A
ve

ra
ge

 T
EP

S 
(G

TE
PS

)

Number of nodes

Data Vortex Infiniband

Fig. 8: Graph500.

advantage of the “aggregation at source” scheme to efficiently
move data from host to VIC DV Memory over the PCIe bus.

We measure performance in terms of aggregated FLOPS.
Figure 7 shows that the Data Vortex implementations not only
performs better than the MPI-over-Infiniband counterpart, but
also that, similar to GUPS in Figure 6b, the performance gap
increases with the increasing numbers of nodes.

Breadth-first search The breadth-first search (BFS) is a very
common kernel in emerging data analytics workloads. The
benchmark allocates a very large random graph in a distributed

memory system and performs 64 searches starting from ran-
dom keys. We use the Graph500 [19] implementation as
our baseline MPI-over-Infiniband reference. This benchmark
is characterized by two key parameters: “scale” and “edge
factor”. The scale is the number of vertexes in the graph being
searched, while the edge factor is the average number of edges
per vertex (total graph edges divided by the number of graph
vertexes). While the edge factor represents the average number
of edges per vertex, the actual number of edges connecting to
any individual vertex follows a power law distribution. Graph
edges for the benchmark are generated with a Kronecker
generator similar to the Recursive MATrix (R-MAT) scale-
free graph generation algorithm. In this benchmark, we used
the standard parameters for the Kronecker generator from the
Graph500 documentation and tuned the scale factor to build
the largest possible graph to store in the distributed memory.
Performance can be measured in terms of traversed edges per
second (TEPS), as well as the time to complete a search. The
benchmark includes three phases: graph construction, search,
and validation. The benchmark main metrics are extracted
from the search phase.

Figure 8 shows the aggregate average TEPS for the Data
Vortex and the MPI implementations versus increasing number
of nodes. We observe that the performance of the Data Vortex
implementation is consistently higher than the corresponding
MPI implementation over Infiniband, and that the performance
gap widens with increasing numbers of nodes. We believe
that this kind of data-driven application is a strong fit for
network architectures such as the Data Vortex. It is difficult to
efficiently aggregate outgoing messages by their destinations
(to assemble fewer, longer Infiniband messages). With the
Data Vortex, we merely need a sufficient volume of outgoing
messages from each node (that can be directed to different
destinations) to ensure that host-to-VIC transfers across the
PCIe bus happen efficiently. This ”source aggregation”, which
is simpler to achieve than ”destination aggregation”, is suffi-
cient to hide most PCIe latency.
Lessons learned The Data Vortex implementations of these
kerenels can run faster than the reference MPI-over-Infiniband
implementations for applications that cannot efficiently aggre-



gate outgoing messages by destination (e.g., GUPS). Further-
more, Data Vortex implementations that can send multiple
messages in batches (even to different destinations) benefit
from aggregating PCIe bus transfers and amortizing I/O la-
tencies. Finally, our results highlight that applications which
redistribute data (such as the FFT) can sometimes benefit by
using the VIC’s memory to fold redistribution operations (such
as a transpose) into the application communications.

VII. APPLICATIONS

We consider three prototype applications that have high
communication cost per computation. All are iterative solvers
for partial differential equations, but they have very different
implementations, data transfer mechanisms, and resultant data
costs. Our intent is to show how the main features of these
problems can be addressed with simple methods that could
be used by the readers as stepping stones to solve other, more
complex problems.

Discrete Ordinates Application Proxy The SN (Discrete
Ordinates) Application Proxy (SNAP) [20] is a proxy appli-
cation for neutron transport applications. SNAP is designed
to mimic the computational workload, memory requirements,
and communication pattern of PARTISON[21], but most of
the physics code has been removed to avoid distribution
restrictions. SNAP is based on discrete ordinate methods. Six
dimensions (three spatial, two angular, and one energy) are
iteratively calculated over each time step. In the MPI reference
implementation, the 3-D spatial mesh is distributed over a set
of MPI processes. At each time step, the entire spatial mesh is
swept along each direction of the angular domain, generating
a large number of messages.

For the Data Vortex implementation, we performed a
“best-effort” porting by first replacing the MPI primitives
with equivalent Data Vortex API functions where possible,
and re-implemented those other MPI primitives (where one-
to-one substitution was not possible) using a combination of
Data Vortex API calls. This simple porting, while quick, did
not yield good performance. We then added an aggregation
scheme (similar to those used in the prior sections) to
minimize the number of PCIe transfers per message; this
improved performance considerably.

Ideal Incompressible Flows Our second problem is modeling
flow of an inviscid, incompressible fluid. The challenge lies
in modeling the instability of the flow at small and decreasing
spatial and temporal scales: as the flow evolves, it becomes
more complex and finer grained, with a multiplication of
eddies and vortex sheets. The best known manifestation of
this phenomenon is the Kelvin Helmholtz instability, when
adjacent regions of fluid with different tangential velocities
develop complex patterns of vortexes. The equations describ-
ing this flow are derived from the Navier Stokes equations
that describe a fluid flow [22] in the high Reynolds number
regime R = V ρL/µ → ∞, where L and V are the typical
scales of length and velocity, respectively. In this case the

0

0.5

1

1.5

2

2.5

3

3.5

4

SNAP Vorticity Heat

D
at

a 
Vo

rt
ex

 s
pe

ed
up

 w
rt

 In
fin

ib
an

d

Fig. 9: Application speedup w.r.t. MPI-over-Infiniband.

Navier Stokes equation can be dimentionalized and reduced
to Euler’s equation:

∂v

∂t
+ v · ∇v = −∇p. (1)

For this algorithm, we significantly restructured the
application to take better advantage of the Data Vortex
network architecture. The majority of the communication cost
is from computating five two-dimensional FFT’s at each time
step t. Assuming an entire row can fit into a single VIC’s
memory, the communication cost is equal to performing
two matrix transpositions. The Data Vortex API enables
delivering data to specific DV Memory locations within
the VICs of specific nodes with very few API calls; this
enables data reordering and redistribution to be integrated with
”normal” data transfers without substatial additional overhead.

Heat Equation The heat equation is a parabolic partial
differential equation describing the changing variations in
temperature (heat flow) within a region over time. We
solve the equation in three dimensions and employ domain
decomposition over the processes involved in the applications.
Thus, each process needs to communication with several
neighbors, which results in a large number of small messages
sent over the network. For the Data Vortex implementation,
as in the previous case, we re-structured the algorithm to take
full advantage of the underlaying hardware features.

Results We compare the Data Vortex implementation of
SNAP, Vorticity, and Heat against MPI implementations of the
same algorithms running over Infiniband. As we mentioned
above, for SNAP we performed a “best-effort” porting with
the addition of simple aggregation schemes for transferring
data to and from the VIC’s memory. For the Data Vortex
Vorticity and Heat implementations, we performed a much
more aggressive re-structuring of the algorithm to better align
with the Data Vortex capabilities. The results are presented in
Figure 9 in terms of relative speedup of execution time for the
Data Vortex implementation over the MPI implementation. As
we can see from the plot, SNAP “best-effort” porting provided
a speedup of 1.19x over the reference MPI implementation;



we regard this as a very good result for the limited effort
expended in porting the application. For the Vorticity and Heat
applications we obtained speedups between 2.46x and 3.41x
with the Data Vortex, but achieving this required a much more
intensive re-structuring of the application to exploit the Data
Vortex capabilities.

The experiments presented in this work indicate that there
might be considerable benefits in using a Data Vortex network,
especially for irregular and data intensive workloads. However,
as exemplified by our experience with the SNAP application,
attempting to use the Data Vortex system as a purely drop-in
replacement for a traditional MPI-over-Infiniband implemen-
tation is unlikely to perform well.

VIII. RELATED WORK

Many researchers have looked at ways to improve the
performance, scalability, and ease of development of irregular
applications on large scale systems. Those efforts span all
levels of the stack, from architecture, to system software, to
the algorithms and applications [23].

The Tera MTA, MTA-2, and their successors, the Cray XMT
[2] and XMT 2, are well-known examples of systems custom-
designed for irregular applications. The Cray XMT and XMT
2 employ the Cray Seastar2+ interconnect [24]; these network
interfaces communicate through Hypertransport across a 3D-
Torus topology. While now old, the Seastar2+ still provides a
respectable peak message rate at around 90 Million. The XMT
multithreaded processors (Threadstorms) implement a global
address space across the whole system, and can generate up to
500M memory operations per second. A switch inside the pro-
cessor forwards memory operations either to the node memory
or to the network, applying only minimal packing before being
sent through the network. However, the reference rate of the
Seastar2+ decreases as the number of nodes increases, and
the topology creates potential for contention on routers when
there is a significant amount of non-local communication (i.e.,
messages directed to non-neighboring nodes in the topology).
This is a typical situation of the unstructured traffic of irregular
applications. The ThreadStorm handles these situations better
than conventional cache-based processors by using extensive
multithreading to hide the network latencies, but studies have
shown scalability limitations [25]. The Urika-GD [26] data an-
alytics appliance still employs an evolution of the Cray XMT
design. Maintaining a fully-custom architecture is expensive,
though, and may not be economically sustainable long term.

After Seastar2+, Cray developed Gemini and Aries network
interconnects to use PCIe host interfaces. Gemini (still based
on a 3D-Torus topology and used for the Cray XE6, XK6 and
XK7 compute nodes) did not provide significant additional
benefit for fine-grained unstructured traffic. Aries [27] (em-
ployed in the Cray XC series) was still based on the PCIe
interface, but improved performance by using a Dragonfly
topology [28] and including additional Fast Memory Access
mechanisms for remote memory access.

IBM has done extensive development on their supercom-
puter interconnects. One of the major innovations for their

PERCS (Productive Easy-to-use Reliable Computing System)
was its network [29], with custom hubs integrated into the
POWER7 compute nodes. The PERCS’ hub module imple-
ments five types of high-bandwidth interconnects with multiple
links fully-connected through an internal crossbar switch. The
links provided over 9 Tbs/second bandwidth, and the internal
switch supported a two-level direct-connect topology without
external switching boxes. Additionally, the hub provides hard-
ware support for collective communication operations (barrier,
reductions, multicast) and a non-coherent system-wide global
address space. Various analyses have shown the effectiveness
of the PERCS network, provided that tasks are properly placed
to maximize the links’ utilization [30].

Bluegene/Q [31] systems implement a 5D torus interconnec-
tion among nodes; each BG/Q node provides 10 bidirectional
links which operate at 2 GB/s in each direction. The network
interface is directly integrated into the processor. The BG/Q
network implements collectives and barriers over the same 5D
torus interconnect. The BG/Q network has proven effective for
collective all-to-all messages of about 8 KB. Several irregular
applications, particularly graph kernels, have been optimized
for the BG/Q. While they provide high performance [32],
mapping the kernels to the architecture required significant
development effort.

Infiniband is the most common supercomputer interconnect
in current systems; new systems typically use Infiniband FDR
(14.0625Gb/s per lane, 54.54Gb/s per 4-lane port). While
Infiniband networks can be built in a variety of topologies
(including dragonfly), fat-tree topology remains the most com-
mon. The reliance on fat-trees limits Infiniband effectiveness
for unstructured traffic [33] and poses cost and scalability
issues for large systems. Infiniband typically requires messages
of several KBs length to reach peak bandwidth due to packet
formation overheads. Even for the best FDR devices, Mellanox
declares peak message rates of 100 Mref/s [34]. Infiniband
also provides a low level API (verbs) for remote DMA
operations, but this requires substantially higher coding efforts
compared to MPI and has additional limitations. Irregular
applications developed using MPI over Infiniband typically
need to aggregate data and maximize bandwidth utilization
with respect to the message rate.

IX. LIMITATIONS

We evaluated the performance of a real cluster using the
Data Vortex network and compared it with the same cluster
using MPI over FDR Infiniband. Comparisons of programma-
bility, cost, power, and other factors are orthogonal and left
as future work. Our present study is limited by the size of
the system available and does not try to model performance
for larger systems than currently available. To the best of
our knowledge, no existing simulator can definitively predict
the performance of an application running on a larger-scale
Data Vortex system. Theoretically, network properties should
be maintained when scaling up, as the same mechanisms and
structures would be replicated. Each doubling of nodes would
add an additional “cylinder” to the Data Vortex Switch, and



would double the number of layers for each cylinder. Those ad-
ditional hops through the switch structure would (minimally)
increase latency but should not change overall throughput per
node. Developing and validating such a simulation is beyond
the scope of this paper. Larger switch implementations would
also depend on technical issues (e.g. pin counts, FPGA routing
limitations, etc) that could impact practical scalability; not all
can be accurately foreseen and modeled at this time.

X. CONCLUSIONS

Emerging applications for data analytics and knowledge
discovery typically have irregular or unpredictable commu-
nication patterns that do not scale well on traditional super-
computers. New network architectures that focus on minimiz-
ing (short) message latencies, rather than maximizing (large)
transfer bandwidths, are emerging as possible alternatives to
better support those applications. In this work we explore a
new network architecture designed for data-driven irregular
applications, the Data Vortex network. This network archi-
tecture was designed to operate with fine-grained packets to
eliminate buffering and to employ a distributed traffic-control
to limit traffic logic.

We compared performance of several applications, from
simple micro-benchmark to complex spectral formulation
of inviscid, incompressible fluid flow. Our results are very
promising and show that Data Vortex system can achieve con-
siderable speedups over corresponding MPI implementations
over FDR Infiniband. In particular, irregular applications for
which it is difficult to aggregate messages directed to the same
destination (such as GUPS and Graph500) show considerable
performance improvements. Similarly, applications which re-
distribute data (such as our FFT) benefit from effective use
of the VICs memory by combining redistribution operations
within the communication operation.

REFERENCES

[1] K. A. Yelick, “Programming models for irregular applications,” SIG-
PLAN Not., vol. 28, pp. 28–31, January 1993.

[2] J. Feo, D. Harper, S. Kahan, and P. Konecny, “ELDORADO,” in CF
’05: Proceedings of the 2nd conference on Computing frontiers, 2005.

[3] “Convey MX Series. Architectural Overview.”
http://www.conveycomputer.com.

[4] A. Morari, A. Tumeo, D. Chavarrı́a-Miranda, O. Villa, and M. Valero,
“Scaling irregular applications through data aggregation and software
multithreading,” in Parallel and Distributed Processing Symposium,
2014 IEEE 28th International. IEEE, 2014, pp. 1126–1135.

[5] J. Nelson, B. Myers, A. H. Hunter, P. Briggs, L. Ceze, C. Ebeling,
D. Grossman, S. Kahan, and M. Oskin, “Crunching large graphs with
commodity processors,” in HotPar ’11: the 3rd USENIX conference on
Hot topic in parallelism, ser. HotPar’11, 2011, pp. 10–10.

[6] G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu, “Parallex: A
study of a new parallel computation model,” in Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, 2007.

[7] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “Active
pebbles: parallel programming for data-driven applications,” in ICS ’11:
the International Conference on Supercomputing, 2011, pp. 235–244.

[8] O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang,
C. P. Lai, A. Biberman, and K. Bergman, “The data vortex optical packet
switched interconnection network,” Journal of Lightwave Technology,
vol. 26, no. 13, pp. 1777–1789, July 2008.

[9] C. Hawkins, B. A. Small, D. S. Wills, and K. Bergman, “The data
vortex, an all optical path multicomputer interconnection network,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 3, pp.
409–420, March 2007.

[10] C. Reed, “Multiple level minimum logic network, us patent 5 996 020.”
[11] A. Shacham, B. A. Small, O. Liboiron-Ladouceur, and K. Bergman, “A

fully implemented 12 times; 12 data vortex optical packet switching
interconnection network,” Journal of Lightwave Technology, vol. 23,
no. 10, pp. 3066–3075, Oct 2005.

[12] R. G. Sangeetha, D. Chadha, and V. Chandra, “4x4 optical data vortex
switch fabric: Fault tolerance and terminal reliability analysis,” in Fiber
Optics and Photonics (PHOTONICS), 2012 International Conference
on, Dec 2012, pp. 1–3.

[13] R. G. Sangeetha, V. Chandra, and D. Chadha, “4x4 optical data vortex
switch fabric: Component reliability analysis,” in Signal Processing
and Communications (SPCOM), 2014 International Conference on, July
2014, pp. 1–5.

[14] Q. Yang and K. Bergman, “Performances of the data vortex switch
architecture under nonuniform and bursty traffic,” Journal of Lightwave
Technology, vol. 20, no. 8, pp. 1242–1247, Aug 2002.

[15] I. Iliadis, N. Chrysos, and C. Minkenberg, “Performance evaluation of
the data vortex photonic switch,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 6, pp. 20–35, August 2007.

[16] “Data vortex technologies. the data vortex network system. available at:
http://www.datavortex.com/architecture/.”

[17] “The hpc challenge benchmark. available at: http://icl.cs.utk.edu/hpcc/.”
[18] “Extrae instrumentation package,” http://www.bsc.es.
[19] “The graph 500 list,” http://www.graph500.org, November 2015.
[20] “SNAP,” http://portal.nersc.gov/project/CAL/designforward.htm#SNAP.
[21] “PARTISN,” http://portal.nersc.gov/project/CAL/designforward.htm#PARTISN.
[22] L. D. Landau and E. M. Lifshitz, “Fluid mechanics, 2nd edition,

pergamon press.”
[23] A. Tumeo and J. Feo, “Irregular applications: From architectures to

algorithms [guest editors’ introduction],” IEEE Computer, vol. 48, no. 8,
pp. 14–16, 2015.

[24] D. Abts and D. Weisser, “Age-Based Packet Arbitration in Large-
Radix k-ary n-cubes,” in SC ’07: the 2007 ACM/IEEE Conference on
Supercomputing, 2007, pp. 5:1–5:11.

[25] O. Villa, A. Tumeo, S. Secchi, and J. B. Manzano, “Fast and accu-
rate simulation of the cray xmt multithreaded supercomputer,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 12, pp.
2266–2279, 2012.

[26] “Cray urika-gd graph discovery appliance. available at:
http://www.cray.com/products/analytics/urika-gd,” 2016.

[27] L. K. Bob Alverson, Edwin Froese and D. Roweth, “”cray xc series
network. cray inc., white paper wp-aries01-1112”,” 2012.

[28] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in Computer Architecture, 2008. ISCA ’08.
35th International Symposium on, June 2008, pp. 77–88.

[29] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The percs
high-performance interconnect,” in High Performance Interconnects
(HOTI), 2010 IEEE 18th Annual Symposium on, Aug 2010, pp. 75–82.

[30] D. J. Kerbyson and K. J. Barker, “Analyzing the performance bottlenecks
of the power7-ih network,” in Cluster Computing (CLUSTER), 2011
IEEE International Conference on, Sept 2011, pp. 244–252.

[31] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow,
and J. J. Parker, “The ibm blue gene/q interconnection network and
message unit,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’11. New York, NY, USA: ACM, 2011, pp. 26:1–26:10. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063419

[32] F. Checconi and F. Petrini, “Traversing trillions of edges in real time:
Graph exploration on large-scale parallel machines,” in Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, May
2014, pp. 425–434.

[33] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage switches are
not crossbars: Effects of static routing in high-performance networks,”
in Cluster Computing, 2008 IEEE International Conference on, Sept
2008, pp. 116–125.

[34] “Mellanox, inc. edr infiniband presentation. avail-
able at: https://www.openfabrics.org/images/ eventpre-
sos/workshops2015/ugworkshop/friday/friday 01.pdf.”


